Investigations of the structural, optoelectronic and band alignment properties of Cu2ZnSnS4 prepared by hot-injection method towards low-cost photovoltaic applications
نویسندگان
چکیده
Cu2ZnSnS4 is a promising, versatile and inexpensive quaternary semiconductor with suitable optoelectronic properties for solar energy conversion. In this work, we report the synthesis of CZTS nanocrystals (NCs) using low-cost homemade hot-injection method. Oleylamine was used as both binder stabilizer NCs during growth process. Detailed investigation influence sulphur concentration reaction temperature on structural, stoichiometric, morphological, attributes carried out. The XRD, Raman, TEM measurements confirm formation phase-pure tetragonal kesterite NCs. synthesized exhibit particle sizes in range 15–30 nm display strong optical absorption visible region. nearly optimal chemical composition confirmed by dispersive X-ray spectroscopy. UV–Visible spectroscopy electrochemical predict band gap 1.3–1.6 eV, which very close to optimum values fabrication single junction cells. estimated conduction offset (CBO) valence (VBO) CZTS-3M/CdS heterostructure are predicted 0.11 0.98 respectively, whereas CZTS-225 °C/CdS heterostructure, CBO VBO 0.10 1.0 respectively. small measured at CZTS/CdS interface encouraging characteristics carrier transport deeper understating alignment provides hopeful approach designing higher efficiency more efficient separation
منابع مشابه
control of the optical properties of nanoparticles by laser fields
در این پایان نامه، درهمتنیدگی بین یک سیستم نقطه کوانتومی دوگانه(مولکول نقطه کوانتومی) و میدان مورد مطالعه قرار گرفته است. از آنتروپی ون نیومن به عنوان ابزاری برای بررسی درهمتنیدگی بین اتم و میدان استفاده شده و تاثیر پارامترهای مختلف، نظیر تونل زنی(که توسط تغییر ولتاژ ایجاد می شود)، شدت میدان و نسبت دو گسیل خودبخودی بر رفتار درجه درهمتنیدگی سیستم بررسی شده اشت.با تغییر هر یک از این پارامترها، در...
15 صفحه اولThe DFT chemical investigations of optoelectronic and photovoltaic properties of short-chain conjugated molecules
The research in the short-chain organic -conjugated molecules has become one of the most interesting topics in the fields of chemistry. These compounds have become the most promising materials for the optoelectronic device technology. The use of low band gap materials is a viable method for better harvesting of the solar spectrum and increasing its efficiency. The control of the band gap of th...
متن کاملthe dft chemical investigations of optoelectronic and photovoltaic properties of short-chain conjugated molecules
the research in the short-chain organic -conjugated molecules has become one of the most interesting topics in the fields of chemistry. these compounds have become the most promising materials for the optoelectronic device technology. the use of low band gap materials is a viable method for better harvesting of the solar spectrum and increasing its efficiency. the control of the band gap of th...
متن کاملStructural and mechanical properties of AFe2O4 (A = Zn, Cu0.5Zn0.5, Ni0.3Cu0.2Zn0.5) nanoparticles prepared by citrate method at low temperature
In this work, the structural and elastic moduli properties of ZnFe2O4, Zn0.5Cu0.5Fe2O4, and Ni0.3Cu0.2Zn0.5Fe2O4 ferrites prepared by the citrate method have been investigated. The structuralcharacterization of the samples is evidence for a cubic structure with Fd-3m space group. TheHalder-Wagner analysis was used to study crystallite sizes and lattice strain and also stressand energy density. ...
متن کاملinvestigation of the electronic properties of carbon and iii-v nanotubes
boron nitride semiconducting zigzag swcnt, $b_{cb}$$n_{cn}$$c_{1-cb-cn}$, as a potential candidate for making nanoelectronic devices was examined. in contrast to the previous dft calculations, wherein just one boron and nitrogen doping configuration have been considered, here for the average over all possible configurations, density of states (dos) was calculated in terms of boron and nitrogen ...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Alloys and Compounds
سال: 2021
ISSN: ['0925-8388', '1873-4669']
DOI: https://doi.org/10.1016/j.jallcom.2020.157093